专注于数字技术的商业观察者
登录×
资讯
2018-01-04

Splunk: 预测2018年人工智能和机器学习的三大趋势

时间: 2018-01-04 编辑:

调研机构Gartner表示,“人工智能(AI)和先进的机器学习技术是被广泛关注的新兴技术,将在企业甚至...

111

调研机构Gartner表示,“人工智能(AI)和先进的机器学习技术是被广泛关注的新兴技术,将在企业甚至整个行业中掀起革命浪潮。它们能够大幅度降低劳动力成本,产生意想不到的新见解,从原始数据中发现新模式,并建立预测模型。”

无疑,人工智能和机器学习作为科技行业的热点将延续至2018年。作为在机器学习方面有着丰富实战经验的解决方案提供商,Splunk 认为,2018年的人工智能和机器学习将呈现以下几大趋势。

人工智能和机器学习成为行业专属

2018年,人工智能在机器学习的推动下,将为很多行业带来可信的深刻洞见以及充满希望的前景。

金融服务机构长期以来依靠数据驱动的决策来管理企业,满足客户需求,并保障他们的投资。更好的应用程序和改进的在线支付流程有助于提升客户满意度,但也同时造成新的攻击途径。具备机器学习能力的人工智能将越来越多地为这些企业提供识别欺诈和异常用户行为的能力,并为客户提供周密的建议来防御这些威胁。

在制造业中,一条复杂供应链上的一台机器出现故障会严重损害生产能力,影响利润率和竞争力。为使现代的连接的设备系统的各个组成部分正常运行,制造商们把所有时间花在设备的维护和同步工作上。利用具备机器学习能力的人工智能,企业可以在出现任何影响业务的故障之前,预测出哪些设备需要维修,以及应该在什么时候进行维修。

计算新闻学的兴起将极大地影响全世界传媒业的发展。2018年,我们将看到越来越多的记者与数据科学家合作。记者将转向与人工智能、机器学习和自然语言处理(NLP)方面的专家进行合作,为当地、全国和全球的观众发掘他们最关心的有新闻价值的故事,揭示以前可能从未发现的问题。

在新零售领域,最好的零售体验是跨越网站、实体商店、客户支持、移动应用程序和社交媒体,以客户为中心的无缝互动。能够提供这种全方位体验的少数零售商是我们所关注的,我们也希望与他们建立情感联系,确保我们的客户忠诚度。

具备机器学习能力的人工智能现在成为让零售商脱颖而出的关键,使大型和小型企业都能够更好地理解他们的客户,并根据含有明显因素(人口统计和购买历史)以及更为模糊的因素(网络使用模式和社会基本情况)的公式,提出有针对性的建议。关心客户忠诚度的零售商会谨慎地使用机器学习。得到客户的认可将成为一条新的黄金法则。

人工智能和机器学习成为B2B的主流

Siri、微软小冰、腾讯 Dreamwriter …….作为消费者,我们已经体验到了人工智能对我们生活的影响。接下来,我们将看到 “开箱即用”式的人工智能和机器学习解决方案的企业应用情形。异常检测、事件关联和容量预测的应用情形?是的,由它们来接手。具备机器学习能力的人工智能将被用于预测各种很有意义的深度见解。

异常检测:访问大量的实时数据,带来了在嘈杂的信息海洋中找出相关信号的额外负担。无论是预测并防止关键IT基础设施出现中断,还是在数百万人流中识别出一个不受欢迎的用户,人工智能和机器学习都发挥了关键作用,也是最迫切需要的能力。

 

自动化:我们还没达到这个层面,也许从来也没想过要完全达到这个层面,但是应避免那些普通的任务,让机器具备自我学习的能力,从而有希望取得更多的创新,同时提高生产效率,增加工作满意度。正如几十年前所预言的,现在是时候考虑机器与人类协同工作环境所产生的影响了。

Staples首席技术官Faisal Masud表示:“Staples使用Splunk Enterprise对关键业务的转换进行实时分析——从订单管理、产品计价,到仓储,最终,让我们的客户有更好的体验,始终领先于网络竞争对手。Splunk的分析和评价指标帮助我们优化工作的方方面面,包括快速识别和纠正不合规的交易,这样,客户将得到最好的服务。Splunk Enterprise平台是我们业务运营基础的关键因素。”

机器会不断学习

人工智能和机器学习的未来是光明,充满希望的,毕竟还有很多领域等着我们去探索:

端到端人工智能。例如,先建立一个识别停车标志的模型,然后再建立能区分行人和汽车的模型。掌握了机器学习模型的端到端人工智能可以获取系统所有状态,然后输出所需要的精确的行动,如右转,加速,减速等等。

自我配置:从架构,到验证直至训练, 具备端到端的机器学习能力,而无需人为干预。

经过预先训练的模型:经过预先训练的开源机器学习模型库,作为可重用的组件,应用于各种各样的应用情形。例如,电信公司应用经过预先训练的模型来检测和预测客户流失。无线提供商在客户信息上结合使用一组类似的数据点——例如,计费计划类型、客户服务呼叫次数、语音和数据使用情况等。一旦为这类数据建立了经过预先训练的模型,就可以与其他提供商共享,从而为整个行业创造价值。

面向物联网的人工智能:传感器设备不但日益商品化而且规模也越来越大,这将推动智能化产业的新一轮发展。智能设备、机械、车队车辆等等,仍然需要管理。这些都需要修理和保养。 机器学习和物联网相结合,意味着为大幅度提高网络性能,延长正常运行时间以及更好的资源管理创造了需求和机会。

写在最后

然而,随着移动通信、云计算、物联网和交通运输等技术在数字化转型的推动下不断发展,在2018年我们将看到网络攻击面也会不断扩展和演变。在一个联网的世界里,到处都有可能成为黑客的切入点,不论是员工的智能手机,还是越来越自动化的交通工具。

黑客的攻击能力已经发展到足以攻破传统的预防和检测边界、区域和行业,这种局面没有丝毫放缓的迹象,而且黑客正在扩展攻击面使攻击范围更加广泛。2017年一些重大的数据泄露事件为新一波的网络钓鱼、身份盗窃和网络欺诈提供了肥沃土壤。攻击途径会越来越多,并采用各种各样的技术。而保护新领域变得更具挑战性,因为安全的周界正在消失,而边界总是在变化。

可以预见的是,自动化将有助于减轻日常的安全任务负担,并帮助缩小技能差距。ISACA估计,到2019年,全球网络安全专业人员的短缺将达到200万,安全技能的差距在逐年拉大,没有放缓的迹象。为弥补技能差距,并帮助更多的采用先进分析技术的公司,自动化将成为首席信息安全官们的首选。

与此同时,用机器学习武装网络安全的竞赛已经开始,人工智能和机器学习在网络安全防御的应用将会扮演几位总要的角色,更为重要的是,安全不再限于SOC,而是成为业务的推动因素。数字化正影响着我们生活的方方面面。但它也放大了我们生活的这个越来越相互关联的世界所固有的风险和潜在的脆弱性。新技术让保护企业的使命更具挑战性。数字化促使首席信息安全官以前所未有的规模迅速在安全运营上进行转型。

数字化促使首席信息安全官以前所未有的规模迅速在安全运营上进行转型。由于网络安全和业务风险管理的融合,以及运营技术(OT)安全和信息技术(IT)安全的融合,这方面的工作正在加速。从基于边界的安全保护转向跨系统、设备和云的数据保护和应用,这将为董事会提供统一的可见性和全面的安全风险评估能力,让首席信息安全官在管理层会更有发言权。企业能够以前所未有的方式来使用他们的数据。利用这些安全深度分析能力和功能,企业有信心解决业务关键问题,增强客户体验,甚至创造新的收入来源。

版权声明:本文版权归数字商业时代所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。